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Salt finger fluxes in a laminar shear flow
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Subtropical ocean waters are susceptible to the occurrence of salt finger instability.
The effect of salt fingers in modifying water mass properties may depend upon the
ubiquitous presence of oceanic shear produced by internal wave motion. We present
an experimental study of the buoyancy fluxes produced by sugar–salt fingers in the
presence of a laminar shear flow. As is commonly done in the laboratory, sugar (the
slower diffuser) was used as a proxy for salt, and salt (the faster diffuser compared
to sugar) was used as a proxy for cold. Sugar–salt fingers, initially aligned vertically,
were observed to tilt when a shear flow was imposed. A consistent decrease in the
salt fluxes was measured as the Reynolds number (Re) was increased by increasing
the shear velocity magnitude. Through regression analysis, the salt fluxes were found
to depend upon the Reynolds number as R−0.025

e , R−0.1
e and R−0.34

e , for density ratio
values (Rρ) equal to 1.2, 1.54 and 2.1 respectively. The salt fluxes produced by the
sheared fingers were also found to decrease by one order of magnitude when Rρ

increased from 1.2 to 2.1. A computation of the salt Nusselt number revealed that
the finger fluxes approach molecular flux values when Rρ = 2.1 and Re � 140.
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1. Introduction
The density of seawater is determined by its temperature (T ) and salinity (S), as

given by the equation of state. The fact that heat and salt diffuse at different molecular
rates may lead to the occurrence of a vertical flow across a stably stratified layer of
fluid. When the vertical distribution of the faster diffuser (T) is stabilizing and the
slower diffuser (S) is destabilizing, such a flow takes place as a result of the salt finger
instability (Stern 1960). It takes the form of alternating columns of rising, cold, fresh
water and descending, hot, salty water (Schmitt 2003). In this laboratory study, sugar
was used as a proxy for salt, and salt was used as a proxy for cold. This avoids the
difficulties of dealing with the hard to control heat exchange with the environment.
The faster diffuser (salt), however, is still labelled T and the slower diffuser (sugar) is
labelled S.

Salt finger activity is important to oceanographers, since it modifies water mass
properties. This modified seawater participates in the global thermohaline circulation.
Conditions favorable to salt finger occurrence are found in much of the subtropical
ocean due to evaporation exceeding precipitation. This produces a warm and salty
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water mass at the surface which overlies cooler, fresher water from higher latitudes. In
particular, when the ratio of the temperature and salinity contributions to the vertical
density gradient (Rρ = ρ0α(∂T /∂z)/ρ0β(∂S/∂z)) lies approximately within the interval
1 < Rρ < 2, the fingers exist within high gradient density steps O(1–5)m separating
mixed layers O(10–100)m in the adjacent fluid. This forms the so-called Thermohaline
Staircase, when a series of such layers and interfaces are found with depth (Schmitt
2003). In a staircase, fingers within the high gradient interfaces produce unstable
buoyancy fluxes that drive large-scale overturning in the adjacent mixed layers. These
fluxes in the ocean, which depend upon vertical temperature, salinity gradients and
fluid molecular properties, may also be altered by the presence of internal gravity
waves. These waves, which are dominated by near-inertial frequencies, most likely
subject the salt fingers to a vertical shear of horizontal velocities.

Observational evidence of salt fingers, possibly affected by an internal wave shear,
were reported by Kunze et al. (1987) as part of the Caribbean Sheets and Layers
Transect project (C-SALT). Shadowgraph images revealed small-scale laminae tilted
±10◦ from the horizontal at finger-favourable density interfaces. Typical height and
velocity differences across these interfaces were 2 m and 15–25 mms−1, respectively,
which resulted in a shear O(10−2 s−1) (Gregg & Sanford 1987). In the North Atlantic
Tracer Release Experiment (St Laurent & Schmitt 1999) in the central waters of the
North Atlantic subtropical gyre, salt fingers that tilted 10◦–20◦ from the horizontal
were often observed at density interfaces with finger-favourable stratification and
weak turbulence characterized by density ratio 1 � Rρ � 2 and Richardson number
Ri � 1, respectively.

Tilted salt fingers were also observed in the laboratory by Wells, Griffiths & Turner
(2001). In this experiment, a vertically sinusoidal shear was produced while a tank was
filled with finger-favourable profiles of sugar and salt solutions. This method produced
a sheared flow with a vertical wavelength of ∼120 mm and maximum horizontal velo-
cities of about ±2.5 mms−1. The vertical velocity of finger growth was computed from
the shadowgraph images as 2.5 mm s−1, which resulted in fingers being tilted to 45◦.

As described above, the few laboratory and observational studies in the literature
indicate that fingers do tilt in the presence of a shear flow. However, much still needs
to be known about the fluxes produced by these sheared, tilted fingers. According to
our information, the work of Linden (1974) is the first and only systematic laboratory
study on the effect of a steady shear flow upon salt fingers. His experiments were
carried out on a rectangular channel, in which two layers of fluid were set up in a
counterflow arrangement. The tank was divided into an upper and a lower section by
a splitter plate. Each section had an inlet at mid-depth that was supplied with fluid at
given steady flow rates controlled by constant-head tanks. By withdrawing the splitter
plate, the two layers could be set in contact, and the fingers started to form between
them, with the shear being produced by the bulk motion of the layers. The salt and
sugar fluxes across the interface were estimated by taking conductivity and density
measurements of the upper and lower fluid solutions as they left the channel. As for
the main goal, the experiments showed that fingers could indeed exist in the presence
of a steady shear flow. In terms of finger structure, a linear stability analysis for
the small shear of a two-layer finger fluid and finite amplitude calculations revealed
that transverse modes, perpendicular to the direction of the mean shear flow, were
inhibited, and the preferred mode of instability is a two-dimensional mode parallel to
the mean flow (longitudinal modes), named sheets. The existence of these sheets was
confirmed in Linden’s experiments by top-view shadowgraph images. It was found
that the sugar and salt fluxes increased with shear (by increasing the velocity difference
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Figure 1. Two-dimensional schematic diagram of the apparatus. The top reservoir is set free
to rotate counter-clockwise (into the plane of the page) and is supported by small wheels.
Below, the finger section and bottom reservoirs stay still.

between the two layers, �U ). This flux increase, however, was not monotonic for the
Rρ values tested, and sometimes only a slight increasing trend was observed. Attempts
to parametrize the finger fluxes were not made.

In the present work, we further explored the effect of a steady shear flow on
salt finger fluxes by conducting laboratory experiments to determine a power law
which expresses the finger flux dependence on governing parameters. We employed
an apparatus with annular geometry that was divided into three sections: a bottom
reservoir, an intermediate working section and a top reservoir. In this set-up, the
shear was produced by the slow rotation of a rigid boundary (the top reservoir) above
the working section that contained fingers. The tank’s annular geometry is thought
to be a better apparatus design than the one previously employed by Linden for
reproducing oceanic sheared finger fluxes in the laboratory, as we will discuss later.

2. Material and methods
2.1. Apparatus

A two-dimensional schematic of the experimental apparatus is shown in figure 1. The
tank was a 17 cm high Plexiglas annulus with a 44.4 cm diameter at the outer wall
and a 20 cm diameter at the inner wall. Inside it were three divided vertical sections:
a bottom reservoir, a working section and a top section. Each section was 5.08 cm
deep with a radial gap width of 9.5 cm. The sections were separated by 0.010 cm
thick porous membranes with a 0.8 µm pore size. These membranes were sheets of
Versapor 800 filter that allowed salt and sugar to diffuse through them according to
the concentration gradients (Krishnamurti 2003).

During the experiments, the membranes were kept well stretched, and functioned as
rigid boundaries separating the fluids. Between the bottom reservoir and the working
section, the first membrane was supported by two 4.4 cm high and 0.95 cm thick
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Plexiglas rings placed next to the outer and inner walls. An O-ring was fitted in a
groove in these Plexiglas rings to hold the membrane taut.

A second Plexiglas annulus was used as the top reservoir. Its inner and outer
diameters were properly chosen so that it could be inserted in the top section of the
larger annular tank, as shown in figure 1. The second porous membrane was held to
this reservoir to separate it from the working section below. The connection between
the rotating and the stationary frameworks was made through a slip ring. This device
was connected to an electromechanical system that provided unrestrained, continuous
rotation while transferring power from a stationary power supply. With this system,
the top reservoir could be set to rotate at controlled rates, producing an azimuthal
motion of the fluid in contact with the membrane. As a result, a shear flow was
formed across the working section with velocities reaching zero at the bottom.

The dimensions of the annular tank were chosen to minimize the curvature effects
on the imposed shear flow. By means of a scale analysis of the equations of motion
in cylindrical coordinates, the critical non-dimensional parameters were found to be
the Reynolds number and annular aspect ratio, given respectively by

Re =
V0L

ν
, ε =

L

R
, (2.1)

where V0 is the magnitude of the azimuthal top reservoir velocity at x = R (the radius
of the outer cylinder), L is the depth of the working section and ν is the molecular
kinetic viscosity of water. This analysis indicated that ε should be smaller than one
and Re should be set as close as possible to O(1) in the experiments.

2.2. Procedure

In preparing the solutions, we used distilled water, cane sugar and kosher salt.
Approximately 525 l of distilled water, 25 kg of sugar and 21 kg of salt were
consumed in the 35 experiments performed. Kosher salt was used because it is free
of calcium silicate often found in table salt: the former makes clear solutions while
the latter does not (Krishnamurti 2003).

The tank was filled in the following way. Initially, two buckets containing salt and
sugar solutions were placed 125 cm above the level of the tank. The bottom reservoir
was then gravitationally filled with salt solution and the membrane stretched over
the fluid to make a flat and rigid bottom for the working section. Care was taken to
allow no air bubbles to be trapped under the membrane during this procedure. The
working section was then filled with a two-layer fluid. A less dense sugar solution was
first poured in and then a denser salt solution was inserted beneath it at a slow filling
rate (2.0–2.5 cmh−1). Finally, the top reservoir was inserted in the large annular tank
and filled with sugar solution.

The volume of the solutions in the top and bottom reservoirs was the same. In each
of these reservoirs, three mechanical stirs were used to keep the solutions well mixed
at all times. During the experiments, fluid samples of 50 ml volume were withdrawn
from the top reservoir using a syringe. Conductivity, density and temperature readings
were taken at 15-minute time intervals and then the samples were returned with the
smallest loss of volume possible. The membranes prevented momentum from being
transferred across them, and thus the withdrawal and re-insertion of fluid in the
reservoirs was carried out without disturbing the flow in the working section. In
the bottom reservoir, the measurements were taken to ensure mass conservation.
An immersion-probe-type conductivity sensor with a precision of three significant
figures and a specific gravity balance with a precision of ±0.0001 g l−1 were used
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for conductivity and density measurements, respectively. The conversions to salt and
sugar concentration were obtained using the polynomial equations of Ruddick &
Shirtcliffe (1979).

The fluxes were computed using a straightforward relation. Calling T tr the salt
concentration on the top reservoir, for example, its time rate of change is given by

dT tr

dt
=

FT

h
, (2.2)

where FT is the salt flux into the top reservoir, via sugar–salt fingers and diffusion,
and h is the depth of the top reservoir. A similar relation applies to the sugar fluxes.

2.2.1. Velocity measurements

To determine the velocity profile produced in the working section, the particle
image velocimetry (PIV) method was employed. The PIV method is a flow velocity
measurement technique in which a plane of laser light is used to illuminate a flow
seeded with tracer particles. The particles were silver-coated hollow glass spheres
whose density approximately matched that of the fluid being studied. The particle
positions were recorded at two different instants of time approximately 1/3 of a
second apart. In this procedure, a high-resolution digital camera oriented 90◦ to the
plane of the light was used. Differences in the refractive index of the air (nair � 1) and
sugar–salt solution (nsu � 1.35 at 10 % concentration) caused undesirable deviations
in the light path from the camera to the annular tank. To minimize this distortion,
the tank was placed inside a 50 cm long (�10 cm deep) acrylic square tank filled
with water. The difference in the refractive index of the water (nwater � 1.33) and
sugar–salt solution is only about 2 %. The recorded images were then analysed using
the PIV software (Christensen, Soloff & Adrian 2000) to determine the instantaneous
horizontal and vertical flow velocities.

2.3. Experimental parameters

In these experiments, we set Rρ equal to 1.2; 1.54; 2.1. The corresponding values of the
sugar Rayleigh number (RS =(gβ�Sh3

ws )/(kT ν)) were RS � 12×1010; 9.4×1010; 7×1010.
The initial salt Rayleigh number (RT = (gα�T h3

ws )/(kT ν)) was set to RT � 4.8×1010

and was not varied between experiments. In the expressions above, g is the
gravitational acceleration, α and β are the fractional changes in density due to changes
in the salt and sugar concentration, respectively, �T and �S are the initial salt and
sugar concentration differences, respectively, kT = 10−5 cm2 s−1 is the molecular salt
diffusion coefficient, hws � 5.1 cm is the working section depth and ν = 10−2 cm2 s−1 is
the kinetic viscosity coefficient of water. The Rρ values above are within the same
range used by Linden (1974) and were adopted here for comparison purposes. The
Reynolds number was computed from the top reservoir rotation velocity (ω) as
Re = (ω × rmhws )/ν, where rm was measured at the mid-radius (rm = 17 cm). The ω

values were set approximately within the range of 0 to 0.02 rad s−1. This latter value
was found by Krishnamurti & Zhu (1996), using a similar annular tank, to be the
limit beyond which radial motions become important.

3. Results
Figure 2 displays two snapshot maps of the velocity vector obtained with the PIV

method. The maps correspond to a region approximately 3 cm deep by 1.2 cm wide
in the plane of the laser used to illuminate the tracer particles. This plane intercepts
the working section at mid-radius (R � 17 cm). In both maps a coherent flow to the
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Figure 2. Vector maps of the instantaneous velocity in the working section. The maps show
a 3 cm depth by 1.2 cm width region; (a) ω = 0.003 rad s−1 (Re � 25) and (b) ω = 0.006 rad s−1

(Re � 50).

right, with vector magnitudes decreasing from top to bottom, can be observed. The
radial velocity component (not shown) was about two orders of magnitude smaller
than the azimuthal component within the range 0<Re < 180.

During many experimental repetitions, qualitative observations were made. By the
time we finished filling the reservoirs, the fingers already occupied most of the working
section depth. They were 3.5–5 cm tall and approximately 1 mm wide. The rotation
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of the top reservoir started right after the filling was finished. The fingers then began
to tilt in the direction of the imposed velocity. In the upper millimetres, the fingers
were curved. The tilt of the fingers increased as the magnitude of ω increased. This
increase also led to a more intense finger curving in their upper regions. The fingers
seemed to remain as three-dimensional structures during the experiments.

Figure 3 shows the change with time of the salt concentration measured in the top
reservoir for Rρ = 1.2, 1.54 and 2.1. Each curve contained 11–14 data measurements
and corresponded to different Re values. In all plots, a monotonic increase in the
salt concentration with time was observed. This is a direct result of vertical salt
transport by the fingers. A slight curving of the lines was seen in all plots, which
means that the time rate of change of salt concentration changes slightly during the
experiments. This curving was more evident when Rρ = 1.2, which corresponded to
a more intense vertical transport by the fingers (larger finger fluxes). In this case,
the salt concentration (T ) in the top reservoir changed from 0 to �4.3 p.p.t. in the
four-hour duration of the experiments. This corresponded to a reduction of �8.4 %
of the initial �T (51.2 p.p.t.) across the fingers. For Rρ = 1.54, the curving was again
observed but with a lower intensity. The initial salt concentration changes from 0 to
�2.3 p.p.t. corresponded to a change of �4.5 %. For Rρ = 2.1, the lines curved slightly
upwards. A longer experimental run would more likely show a downward curving
similar to that observed for Rρ =1.2 and Rρ = 1.54. The average change in T , from
0 to 0.8 p.p.t., corresponded to a reduction of �1.6 % of the initial �T . This smaller
change corresponded to a less intense vertical transport by the fingers (smaller finger
fluxes) for Rρ = 2.1 than occurred in the previous cases, as was expected for higher
density ratios.

A linear fit was performed to determine the slope associated with each salt
concentration curve. The time scale, τ =h2

ws/ν, for the flow adjustment in the working
section was estimated to be �40 min. Hence, the first three points on each line in
figure 3 were not used when computing these slopes. The fluxes were then obtained by
multiplying each slope value by the depth of the fluid in the top reservoir (h = 3.8 cm).
Figure 4 shows the resulting salt fluxes plotted against the Reynolds number. The first
point on the left (highest flux value) corresponded to an experiment with no shear
imposed (Re =0). A decrease in the salt fluxes was clearly observed as Re increased.
Deviations from a monotonic decrease were seen in the cases where Rρ = 1.2 and
Rρ = 1.54. In the first case, the salt flux fluctuated in the interval 53 < Re < 122 while
in the latter, a small increase in FT occurred at Re � 75. These observations might
indicate some transitional state in the FT versus Re dependence. However, in a few
repetitions of these runs, no other evidence of such a transition was observed. For
higher Re values, Re � 200, which were not explored here, radial motions are expected
to become important and may cause a different flux response.

From dimensional analysis, the salt flux FT may be expressed as

FT = kT

�T

hws

f (Re, Rρ, RT , τ, Pr ), (3.1)

where the quantity kT (�T )/(hws ) is the diffusive flux, f is a function of the non-
dimensional parameters RT , Rρ and Re, τ = kS/kT is the diffusivity ratio and Pr = ν/kT

is the Prandtl number. In the sugar–salt system, τ � 0.3 and Pr =1000. A slight
decrease of RT with time during a single experiment occurred owing to the small
decrease of the initial �T . However, this decrease was less than 10 % and hence RT

was taken as a constant in this analysis. Therefore, for a fixed Rρ , we express f as a
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Figure 3. Concentration of salt versus time in the top reservoir. The curves are offset by a
factor of 0.2, 0.1 and 0.05 p.p.t. for Rρ = 1.2, 1.5 and 2.1 respectively.
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Rρ 1.2 1.54 2.1
C 11 ± 0.06 8.1 ± 0.15 6.2 ± 0.2
a −0.025 ± 0.004 −0.1 ± 0.01 −0.34 ± 0.01

Table 1. FT dependence with Re for fixed Rρ values.
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Figure 5. The salt flux variation with density ratio for all the experimental runs.

function of Re only and write this as a power law:

f ∼ (Re)
a. (3.2)

Hence,

FT ∼ kT

�S

hws

(Re)
a. (3.3)

To determine the exponent a, we take the logarithm of equation (3.3) and rearrange
it to obtain linear equations:

Zn = aXn, (3.4)

where

Zn = ln(FT ) − ln

(
kT

�T

hws

)
,

Xn = ln(Re).

A least-squares fit to the data using a linear regression is shown in table 1. These
results are displayed in figure 4 and are superimposed on the FT versus Re curves.
The constants (C) were determined from the graph by eye.

The variations of FT with Rρ for fixed Re values were computed in figure 5. The
top curve shows the FT pattern when Re =0. In the lower curves, the FT dependence
with Rρ for sheared fingers follows a pattern similar to the experiments with no shear.
In all cases, the FT values decreased with increasing Rρ by approximately one order
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of magnitude in the range 1.2<Rρ < 2.1. Attempts to include the density ratio on
the flux parametrization in (3.3) would have required us to explore a larger number
of Rρ data points. This could have been achieved by employing the method used by
Turner (1967) of running through parameter space with the passage of time in his
classical run-down experiments. However, with this method, our experiments would
last for days and require the use of long-lasting electromechanical devices and a fully
automated system for collecting the data, which were unavailable.

Figure 6 shows the salt Nusselt number (NT ), defined as the ratio of the total salt
flux measured and the molecular diffusive flux (NT = (FT /kT )(�T /hws )) as it varies
with Re for Rρ = 2.1. At this particular value, NT was seen to range from �3.2 at
Re = 0 to 1 at Re � 140, and approached the molecular diffusive flux value, i.e. NT =1.
This low value should be expected at higher Rρ for experiments with no imposed
shear.

As seen in figure 3, the salinity in the top reservoir increased monotonically. Yet, in
many repetitions of these experiments, we always found that the density ρ remained
unchanged to the fourth decimal place, i.e. the export of sugar out of and the import
of salt into the top reservoir compensated for each other. We inferred that the time
rate of density change due to sugar concentration (ρoβS) was decreased constantly, as
displayed in figure 7. This curious phenomenon was also observed by Krishnamurti
(2003) and appears to be related to a chemical bond theory of the density of salt
solutions (Dougherty 2001). According to this theory, the addition of salt perturbs
the hydrogen bond strength of the water molecules, to cause changes in the density
of the salt solutions. However, it is still not clear how this process could compensate
for the decrease in the density of the top reservoir solution, which is required to occur
by the finger mechanism. This phenomenon should not be expected to hold for all
salt concentrations, as verified by Krishnamurti (2003), but that was not the case in
our experiments. Owing to this phenomenon, estimates of the sugar fluxes could not
be obtained.
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(dashed circles); density (dashed stars); and the inferred density due to changes in the sugar
concentration (dashed squares), for Rρ =2.1 and Re =0, in the top reservoir solution.

4. Discussion
4.1. A finger flux reduction mechanism

The observed decrease in the salt fluxes with increasing Re may be closely related to
the observation that the fingers were seen to tilt in the direction of the imposed shear
flow. We discuss this idea, combining a linear stability analysis and the thermohaline
staircase model of flux reduction (Krishnamurti 2003).

We used the salt finger model of Howard & Veronis (1987) for the case of no salt
diffusion (κS = 0), and computed the density in rising and descending fingers where
the equilibrium temperature is given by hyperbolic and trigonometric functions:

T = Q

[
(cosh x cos(πb − x) + cos x cosh(πb − x))

cosh πb + cos πb

]
. (4.1)

In this expression, πb is the finger width and Q = β�S/αLT z in rising fingers; the
sign is reversed in descending fingers. L is the buoyancy boundary layer thickness:

L =

(
4νκT

gαTz

)1/4

, (4.2)

where T z is the mean vertical temperature gradient. The salinity in the descending
fingers is taken as �S and in the rising fingers as S =0.

Calculations show that if negatively buoyant descending fingers are placed
horizontally over positively buoyant horizontally placed rising fingers, convective
instability will result if the Rayleigh number R (determined by the density difference
�ρ between the up- and down-fingers and the finger width, now defined as δ/2)
exceeds the critical value RC:

R = g
�ρδ3

ρ0κT ν
� RC. (4.3)
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S = �S
(a) (b)

S = �S

S = �S S = �S S = �S/2

S = �S/2 S = 0

S = 0

S = �S/2 Stirred convection layer

S = 0

S = 0

Figure 8. From Krishnamurti (2003): schematic representation of the finger flux reduction due
to convection. (a) Salinity �S is exported from the top reservoir via down-fingers, while fresh
water (S = 0) is imported via up-fingers. (b) Salinity �S is still exported from the top reservoir,
but the import is of salinity S = �S/2 resulting from the mixing of up- and down-fingers in
the convection layer. Thus half the export is returned, leading to a flux reduction by factor
one-half.

If the fingers are not horizontal, but at an angle θ to the vertical, then g may
be replaced by g sin θ in (4.3). Thus, a critical angle θC for convective instability is
obtained. Our calculations indicate that θC ∼ 30◦–40◦ and depends on the density
ratio Rρ and the finger width δ/2.

Linear instability does not imply a flux increase or reduction. However, we argue
that stirring by convection, as depicted in figure 8, would result in flux reduction
as described by Krishnamurti (2003). The descending fingers carry salinity �S from
the top reservoir, and the rising fingers carry no salinity from the bottom reservoir
(figure 8a), resulting in the salt flux F0. If the up- and down-fingers are perfectly
mixed, as in figure 8(b), then the rising fingers reaching the top reservoir will have
salinity �S/2, i.e. half of the �S sent down in the descending fingers is returned to
the top reservoir, resulting in flux F0/2. In general, if there are n convecting zones,
the flux is reduced to F0/n (Krishnamurti 2003).

Near the onset of instability, R � RC , the resulting mixing may be less efficient than
when R � RC . As an indication of this effect, we note that as the angle θ is increased
(as observed for higher shear magnitudes in our experiments), the potentially unstable
region, where denser fluid overlies less dense fluid, grows in size. The potentially
unstable regions are indicated in figure 9 by the hatched shading. In figure 9(a) 17 %
of the area is potentially unstable, in figure 9(b) the value is 30 % and in figure 9(c)
70 % is potentially unstable. We therefore suggest this increasing partial instability
may account for the monotonic decrease in flux with increasing shear.

We also note that in figure 8 the asymptotic reduction at large shear would be
F0/2 if one convection zone fills most of the layer (except where fingers emerge from
each boundary). This may be the case at a small enough Rρ where the destabilizing
component is relatively large. On the other hand, the asymptotic reduction in the
flux may be F0/3 if the convection is unable to penetrate the two layers (as may be
the case for large Rρ) and the fluid state consists of fingers out of the top boundary,
a convection layer below this, fingers at an interface, convection below the interface
and fingers at the bottom boundary. The two mixing zones, if thoroughly mixed,
would lead to a flux of F0/3. We note from the experiments that the observed fluxes
decrease monotonically with the imposed shear (Re), and the ratio of the observed
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Rρ Fn = (FRe500)/(FRe0)

1.2 0.8
1.5 0.6
2.0 0.3

Table 2. The salt flux dependence with Rρ at Re = 500 normalized by the flux at no shear.

z

x

S = �S S = �S S = �S S = �S S = �S S = �S

S = 0S = 0S = 0S = 0S = 0S = 0

S = 0 S = 0 S = 0

(a) (b) (c)

S = �S S = �S S = �S

Figure 9. Schematic representation of the convecting area (hatched shaded) between two
consecutive finger columns. Potentially unstable areas are approximately (a) 17 %, (b) 30 %,
and (c) 70 %.

‘asymptotic’ flux (at Re = 500) to the unsheared flux F0 varies with Rρ , as shown in
table 2.

Indications of a flux reduction of three-dimensional fingers tilted by an imposed
shear flow have been reported by Kunze (1990) for a steady shear, and by Wells et al.
(2001) for a sinusoidal shear through numerical model calculations. These models,
however, have a quite different set-up from the one suggested here, and the flux
reduction in their case seems related to a decaying of the effective finger velocity (w) as
the angle decreases from the vertical rather than a mechanism of convection between
heavier and lighter consecutive tilted fingers. That gives a different dependence of
the reduced finger fluxes with the angle. More recently, three-dimensional direct
numerical simulations (DNS) of heat–salt fingers interacting with inflectional shear
were performed by Kimura & Smyth (2007). Although the primary instability has
generated salt sheets aligned with the sheared background flow in their simulations,
subsequent mechanisms of secondary instability combined to lead the flow to a
turbulent state reducing the effective saline diffusivity.

4.2. A comparison with Linden’s results

Despite the use of the same range of experimental parameters, different results were
found by Linden (1974) and the present study. While the finger fluxes were increased
with increasing shear in Linden’s experiments, the opposite was observed here. The
apparatus geometries may have played a key role in these results. As discussed by
Linden, the observed increase in fluxes with increasing �U is consistent with the
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notion that unsheared salt fingers are in a state of quasi-equilibrium (Linden 1973)
with the flux through the fingers being equal to that into the convecting layers on
either side. In his experiments with imposed shear, the mean flow advected the sugar
and salt brought by the fingers away from the interface region and thereby increase the
potential of the convecting layers to take a larger flux from the fingers (Linden 1974).
This potential increases with a greater magnitude of shear flow. Thus, the flux increase
observed by Linden seems to depend strongly on the way horizontal advection (inlet
and outlet of fluid) is imposed to maintain the shear flow in the rectangular apparatus.
In his experiments, the advection of the initial T and S fluid volume over a finite
horizontal finger region does not resemble the ocean scenario, which is characterized
by long horizontal layers with homogeneous T and S properties. This realization also
led Linden to conclude that, in the real ocean, finger fluxes should remain unaffected
by the presence of a steady shear flow. Despite the shortcoming of having a radial
velocity component, which was kept small compared to the azimuthal one in our
experiments, the use of the annular apparatus allowed shear to be imposed with no
outlet of fluid from the working section, therefore preserving the quasi-equilibrium
of fingers and convecting layers. In this sense, the annular apparatus seems a more
appropriate choice for studying the fluxes produced by oceanic sheared fingers in the
laboratory.

Notable differences between the two studies were also found for the finger structure.
The two-dimensional mode (sheets) found by Linden (1974) was not observed in our
experiments. Difficulties associated with the deviation of light through an annular
tank, plus the fact that the working section was confined between two closed reservoirs,
prevented us from conducting a more detailed investigation of the finger structure.
From our crude observations with the naked eye, fingers remained three-dimensional
in agreement with Wells et al. (2001).

We wish to point out that, apart from apparatus geometries, there are other
fundamental differences. In our study, the boundary conditions were u = uo (the
velocity of the rigid boundary), w = 0 (the vertical velocity), T = To and S = So. The
latter two were set by the experimenter at each boundary. In Linden’s experiment,
the conditions for u, T and S at the interface (z = 0) can be expressed as

w1u1 + ν
du1

dz
= w2u2 + ν

du2

dz
, (4.4)

w1T1 + kT

dT1

dz
= w2T2 + kT

dT2

dz
, (4.5)

w1S1 + kS

dS1

dz
= w2S2 + kS

dS2

dz
, (4.6)

where indices 1 and 2 refer to values at each side of the finger interface. For initial
conditions, we had fingers that were well developed and occupied most of the working
section prior to the application of the shear flow, while in Linden’s experiments fingers
started to grow only after the removal of the splitter plate. As described by Kunze
(1990), laboratory experiments reveal that while sheets develop in steady shear they
break up into square planform fingers when the shear is turned off. If shear is then
re-established, the fingers tilt rather than re-forming sheets. Therefore, fingers are not
able to adjust their spacial structure to changing background shear. This would then
bring Linden’s and the present finger structure observations to an agreement.

Another point that may explain both observations can be related to the non-
dimensional parameters. For comparison purposes, we used the same Rρ and Re
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values as in Linden’s experiments. The Richardson number values (Ri) used in both
studies were well above critical and their ranges mostly overlap. On the other hand,
owing to the observed differences in finger height, �3.5–5 cm in our experiments, and
�0.5–1.5 cm in Linden’s, the resulting RT and RS overall values were of order 1011

in our case and of order 109 and lower in Linden’s experiments. Although we deal
with fingers here, it is worth mentioning that, on Rayleigh–Bénard convection, as the
Rayleigh number (R) is increased, the flow structure changes from two-dimensional
to three-dimensional (Busse & Whitehead 1971; Krishnamurti & Howard 1981). In
this case, further investigations on the sheared finger parameter space would help
determine a possible existence of a mode transition.

4.3. Tilted finger fluxes in the ocean

As described in § 1, shadowgraph images taken during the C-SALT project revealed
fingers tilted by ±10◦ from the horizontal, suggesting the presence of an internal wave
shear. Similar tilted fingers were observed during the North Atlantic Tracer Release
Experiment (NATRE). As discussed by Kunze et al. (1987), by simply kinematic
arguments, one might expect the finger orientation to be �z/�x = w/u. The 2–3 cm s−1

velocity difference across interfaces found in the C-SALT is sufficient to produce tilts
up to 86◦ from the vertical, for typical vertical finger velocities of 0.01 cm s−1. In
our experiments, the shear magnitudes imposed across the finger interface were set
to be in the same order as those computed in the C-SALT project (10−2 s−1). To
accomplish that, through a 5 cm finger depth section, the velocity differences imposed
across the fingers varied from 0.02 to 0.4 cm s−1 approximately. Taking the vertical
velocity (w ) as equal to 0.01 cm s−1, this would result in fingers tilted by 23◦ to 63◦

from the vertical. These values should be even smaller since w = 0.01 cm s−1 may be
overestimated for the less vigorous sugar–salt finger fluxes. In fact, we observed a tilt
of about 20◦–40◦ in the present experiments.

The presence of tilted fingers reported in the C-SALT and NATRE projects and
associated with low buoyancy fluxes (Greg & Sanford 1987) and absence of staircases
(St Laurent & Schmitt 1999), respectively, could be the case of finger fluxes reduced
by local internal wave shear. Even in such a case, the overall ability of ocean fingers
to produce significant fluxes should not be viewed with scepticism. The more vigorous
heat–salt finger fluxes imply higher values of w than for sugar–salt ones. Hence,
by the same kinematic reasons described above, one might expect ocean fingers to
be less tilted by shear and their fluxes less reduced, according to the mechanism
suggested in § 4. Thus, the asymptotic flux reduction at Re =500, displayed in table 2
for sugar–salt fingers, may be smaller for heat–salt ocean fingers. Also, for the slowly
varying near-inertial shear (Kunze 1987), ocean fingers should be expected to quickly
re-establish their fluxes. As a matter of fact, the yet unknown relationship between
sugar–salt and heat–salt finger fluxes remains a major limitation to possible attempts
in developing a parametrization of salt finger fluxes in the ocean.

5. Summary and conclusions
In the present work, we performed laboratory experiments on sugar–salt fingers in

the presence of a steady shear flow. A quantitative study was conducted to determine
a power law that expresses the salt flux dependence on Reynolds number. The main
results are summarized as follows.

(i) The salt fluxes (FT ) decreased with increasing Reynolds number (Re).
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(ii) A flux law describing the FT dependence with Re is suggested:

FT (Rρ = 1.2) = (11 ± 0.06)

(
kT

�T

hws

)
R−0.025±0.004

e , (5.1)

FT (Rρ = 1.54) = (8.1 ± 0.15)

(
kT

�T

hws

)
R−0.1±0.01

e , (5.2)

FT (Rρ = 2.1) = (6.2 ± 0.2)

(
kT

�T

hws

)
R−0.34±0.01

e . (5.3)

(iii) The sheared finger fluxes decreased by one order of magnitude when Rρ

increased from 1.2 to 2.1.
(iv) The finger fluxes of salt in the presence of a shear flow approached molecular

flux values for Rρ = 2.1 and Re � 140.
Our experiments suggest that, in the ocean, three-dimensional salt fingers should be

expected to have their fluxes diminished under steady shear conditions. Even though
the present results can not be directly applied to quantify finger fluxes in the ocean,
we expect they will help future theoretical and experimental studies and contribute
to finger flux parametrizations in general circulation ocean models.
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